Mechanisms of reoxygenation injury in cultured ventricular myocytes.
نویسندگان
چکیده
To investigate factors contributing to reperfusion and reoxygenation myocardial injury, we exposed layers of cultured chick ventricular myocytes to severe hypoxia for up to 3 hours in the presence of 20 mM 2-deoxyglucose, zero glucose, and 5 mM pyruvate, and then exposed the myocytes to reoxygenation. Lactate dehydrogenase (LDH) release was moderately increased during 3 hours of hypoxia but was increased markedly during reoxygenation. Coincident changes in intracellular calcium concentration ([Ca2+]i) and cell motion were also measured during hypoxia and reoxygenation. During hypoxia, [Ca2+]i increased to more than 1 microM, and with reoxygenation, [Ca2+]i abruptly decreased slightly but remained elevated more than 1 microM. Cells developed a stable rigor after 30 minutes of hypoxia. Reoxygenation caused a marked hypercontracture within 5 minutes. Pretreatment of myocytes with either 2,3-butanedione monoxime, which inhibits Ca2(+)-dependent force development, or cyanide inhibited reoxygenation hypercontracture. LDH release after reoxygenation was also significantly reduced in the presence of 2,3-butanedione monoxime. Treatment of myocytes with superoxide dismutase and catalase during hypoxia also resulted in a decrease in LDH release during reoxygenation. We conclude that an abrupt increase in [Ca2+]i during reoxygenation does not account for reoxygenation injury. However, in the presence of elevated [Ca2+]i, reoxygenation and the resulting probable resynthesis of ATP causes [Ca2+]i-dependent myofilament crossbridge cycling, and the resulting hypercontracture contributes to myocyte damage. The generation of oxygen free radicals after reoxygenation also appears to contribute to cell injury in this system.
منابع مشابه
Astragaloside IV inhibits hypoxia-induced cardiac myocytes death via PKCβ/ Egr-1 pathway
Astragaloside IV exerts beneficial effects on hypoxia/reoxygenation-induced cardiomyocyte injury. However, the exact mechanisms needs further disclosed. This study was designed to investigate the role of PKCβ/Egr-1 pathway in the protective effect of Astragaloside IV on hypoxia/reoxygenation injury. Exposed under hypoxia/reoxygenation condition, the primary cultured neonatal rat cardiac myocyte...
متن کاملAntisense inhibition of Na+/Ca2+ exchange during anoxia/reoxygenation in ventricular myocytes.
This study investigated the role of the Na+/Ca2+ exchanger (NCX) in regulating cytosolic intracellular Ca2+ concentration ([Ca2+]i) during anoxia/reoxygenation in guinea pig ventricular myocytes. The hypothesis that the NCX is the predominant mechanism mediating [Ca2+]i overload in this model was tested through inhibition of NCX expression by an antisense oligonucleotide. Immunocytochemistry re...
متن کاملIntramitochondrial [Ca21] and membrane potential in ventricular myocytes exposed to anoxia-reoxygenation
Delcamp, T. J., C. Dales, L. Ralenkotter, P. S. Cole, and R. W. Hadley. Intramitochondrial [Ca21] and membrane potential in ventricular myocytes exposed to anoxia-reoxygenation. Am. J. Physiol. 275 (Heart Circ. Physiol. 44): H484– H494, 1998.—The aim of this study was to investigate the role of mitochondrial ionic homeostasis in promoting reoxygenation-induced hypercontracture in cardiac muscle...
متن کاملHypoxia-reoxygenation induced necroptosis in cultured rat renal tubular epithelial cell line
Objective(s): The aim of this study is to explore the potential role of hypoxia/reoxygenation in necroptosis in cultured rat renal tubular epithelial cell line NRK-52E, and further to investigate its possible mechanisms.Materials and Methods: Cells were cultured under different hypoxia-reoxygenation conditions in vitro. MTT assay was used to measure the cell proliferation...
متن کاملROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes.
The cardiac Na(+)/Ca(2+) exchanger (NCX) contributes to cellular injury during hypoxia, as its altered function is largely responsible for a rise in cytosolic Ca(2+) concentration ([Ca(2+)](i)). In addition, the NCX in guinea pig ventricular myocytes undergoes profound inhibition during hypoxia and rapid reactivation during reoxygenation. The mechanisms underlying these changes in NCX activity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 83 2 شماره
صفحات -
تاریخ انتشار 1991